足迹
2018不朽1
登录
关灯
护眼
字体:

第1章 自愿加班的牛马(第1页)

2024,8月31日,晚上11:35。

杭城,某大楼内。

灯火通明。

看得出一栋楼里仍然有数不清加班的牛马。

某间办公室内数位牛马依旧在工位上不知疲倦地自愿加班。

“林枫,别忘了调参数啊!”

林枫面前的六大块电脑屏幕,不知道的还以为是看监控的。

不过林枫的工作可比看监控的无聊多了,看监控的偶尔还能看到些攒劲的劲爆画面,而林枫入目的却全是枯燥。

林枫眼前的屏幕上显示的是一系列复杂的训练数据和参数调试界面。

模型的训练进度条还在缓慢前进,CPU和GPU的占用率几乎达到了峰值。

他迅速在键盘上敲击几下,调整了几个关键参数的值。

林枫调完参数后,头也不抬地回应道:“知道了,我刚才在尝试不同的学习率。”

林枫的语气不悲不喜,像个没感情的机器人,显然他一门心思都在全力解决眼前的问题。

“这次的数据集比上次复杂得多,要是调得不对,训练结果会有很大的偏差。”

坐在林枫工位一旁的王珊一边提醒,一边同样紧盯着自己面前的一堆屏幕,不断记录着实验数据。

“没错,王姐,我打算先尝试降低学习率,再加大正则化项的权重,看看能不能提高模型的泛化能力。”

林枫迅速地输入了新的参数设置,然后按下了回车键,模型重新开始训练。

泛化能力是指机器学习模型对测试数据或真实世界数据的预测能力。

一个模型具备良好的泛化能力,才能在训练数据上表现良好,而且在测试数据或新的数据上也能保持较高的准确性和稳定性。

而学习率是一个控制模型在每一步训练中更新其内部参数(如权重)的速度的超参数。简单来说,它决定了模型在每次“学习”

时向“正确答案”

迈出多大的步子。

尝试不同的学习率就是在寻找一个合适的学习速度。

如果学习率太高,模型可能跳过最优解(即每次迈出的步子太大);如果学习率太低,模型收敛速度会很慢(即步子太小,训练过程会非常漫长)。

林枫在尝试不同的学习率,目的就是为了找到一个最适合当前模型和数据的学习速率,使得训练过程既快速又高效地达到最优结果。

说起来容易,实际上是枯燥的,而且极其枯燥。

不过人工智能的背后那面又哪有不枯燥的呢?

林枫无奈苦笑,闷头继续工作。

“训练集的准确率提升了!但是验证集的损失还在波动……”

王珊突然出声,她的眼睛紧紧盯着实时更新的图表。

“别急,等它再跑一会儿看看。”

林枫说道,他深知模型训练是一个反复试验的过程,急不得。

林枫不急,可是有人急。

这时,办公室的门被推开,技术部的负责人李冰河走了进来,手里拿着一杯咖啡。“怎么样,有进展了吗?”

“还在调试参数,刚尝试了一些新的设置。”

面对质询,林枫机械地回答。

“很好,”

李冰河点了点头,“不要急,参数调整是关键,这个模型对我们的项目非常重要,要确保它的精度和泛化能力。”

林枫和王珊互相对视了一眼,点了点头。

紧接着李冰河接着说道:“你们也别太心急,要是这个模型不能奏效我们就还用最开始的那个模型!”

林枫无语,一开始说“微调”

模型的是你,现在说这个模型不奏效就用最开始模型的也是你。

林枫很想骂人,调来调去还踏马用第一版是吧?