足迹
从全能学霸到首席科学家的
登录
关灯
护眼
字体:

第14章(第2页)

意外的系统奖励

io传奇第六题有多难,1988年,参加io的各国选手总共有268名,但其中在这道题拿满分的选手却只有11位。

这十一位选手中,就包括了一位后来的菲尔兹奖得主,吴宝珠。

而被这道题难住的人中,也不乏一些后来知名的数学家,比如陶哲轩,他在其他题上都拿到了满分七分,但在这道题上只拿到了1分。

除此之外,就连议题委员会以及四位数论专家,也没能在六个小时的限制时间内解出这道题。

由此可见,这一道题的难度有多么高,也因此,它被议题委员会认定为极其困难,成为了io中的“传奇第六题”

但让丁平有些想不通的是,这张模拟卷,为什么要把这道题给出在这里?

这是打击学生自信心吗?

得亏他还没把这张卷子发给培训班上的学生。

但很快,他又想到了林晓。

林晓回去之后,大概已经把第三题给写出来了,开始做第四题了吧?

他能做出来吗?

尽管今天已经见识到了林晓的天赋,但是对于这道赫赫有名,甚至还有些传奇性质的难题,丁平心中就没有抱太大希望了。

io一般是不会出这么难的题的,当初出这道题,其实源自于出题人的一点小情绪,于是就精心设计了这样一道题,专门来难为各国的选手。

况且,这么困难的题,对出题人的水平也有很大的要求。

丁平摇摇头,不再多想,只能等明天的培训课时,给林晓讲一讲了,免得到时候对他的心态造成影响。

……

林晓的房子里。

『……根据(1),a2必为整数;

根据(2),a2不可能为0;

由于a1≥b1,因此a2必定小于a1

但由于a1已经是方程的最小解了,a2不应该小于a1,因为这和我们说a1+b1是方程解的和的最小值,因此两者相矛盾……

因而最终我们可以证明,(a2+b2)(ab+1)是某个正整数的平方。』

证毕。

很有仪式感地一笔一划,写完最后两个字,林晓不禁抹了一把汗。

“差点被这道题秀住了,还好我技高一筹。”

长出一口气,他刚开始可真是被难住了,但幸好,在最后他又想出了一个更秀的逻辑,也就是利用反证法,去证明“没有最小,只有更小”

,然后才算完成证明。

他对于自己的这个证明方法都感到相当的佩服。

“不愧是我。”