第1588节(第3页)
随后徐云将PPT翻到了下一页,对现有的几种理论进行起了锐评:
“RVB理论能够解释高温超导的一些强关联效应,如赝能隙和反铁磁序,但它的弊端在于没有给出具体的电子配对机制和对称性,也没有给出可测量的预言。”
“更早一些的t-J模型认为电子在铜氧面上通过交换自旋为1/2的激子形成库珀对,可以解释高温超导的d波对称性和电荷自旋分离,但同样没有给出具体的配对机制。”
“旋涨落模型则认为电子通过交换自旋涨落而形成库珀对,在这个框架里,自旋涨落是一种由反铁磁序和电荷密度波耦合而产生的准粒子。”
“自旋涨落模型也能够解释高温超导体中的d波对称性和强关联效应,但遗憾的是,它依然没有给出具体的配对机制。”
“徐云同学。”
在徐云说完这番话后,薛其坤院士举手打断了他:
“听你这说法……你这次采用的思路,似乎并不是主流中的一种?”
“没错。”
徐云点了点头,肯定了薛其坤的判断:
“我这次用于描述机理的理论此前并未有人提出过,我将它称之为……陈-徐磁矢势正则理论。”
这一次。
包括一直没有出声的杨老在内,台下的人顿时齐齐一愣。
陈-徐磁矢势正则理论。
简简单单的几个字,包含的信息量似乎有点大啊……
譬如磁矢势。
相对于电流电荷,磁矢势这个物理量的知名度可能要低一点儿。
实际上它是一个旋性矢量,和磁场有关:
已知在稳定磁场中矢量B的散度为零,根据重要失量恒等式任何矢量场的旋度的散度恒为零,因此B可表示为B=▽×A,矢量场A成为矢量磁位,因此得到电流分布的A,对A做微分运算就可以得到B。
对▽×▽×A=μJ化简可得▽^2A=-μJ,即矢量泊松方程,在直角坐标系下等价为三个标量泊松方程。
非常简单,也非常好理解。
这玩意儿和高温超导之前也存在一定关系,因为在电磁场中运动的电子总是伴随着带一个相位,这个相位其实就是磁矢势。
“……”
随后坐在薛其坤身边的王老想了想,对徐云问道:
“小徐,你继续吧,详细解释一下你的这个理论。”
徐云见状再次点了点头,这次没有再用PPT了,而是拿起粉笔在一旁的黑板上写起了板书:
“某种意义上来说,超导就像击鼓传花,电子就像小朋友,小朋友坐在自己的位置上没动,所以不会互相碰撞产生电阻,而他们手上传的花就是那个无质量的相位。”
“因此从这个思路切入,可以在紧束缚模型下写出一个规范不变的哈密顿量,也就是UHUf=-∑(ij)tijcifeiAijcj+h其中Aij=θi-θj。”
“电子向左和向右跳,会附带一个正负的相位,这就是超导电流的主要来源,如果计算局域电子数ni=cifci随时间的变化,也就是海森堡方程,以及连续性方程anat+aJax=0,很容易得到流算符……”